以下是重构后的代码:

```python

import re

import numpy

from sklearn import linear_model

from matplotlib import pyplot as plt

# 导入数据

fn = open("C:/Users/***/Desktop/Python数据分析与数据化运营/chapter1/data.txt")

all_data = fn.readlines()

fn.close()

# 数据预处理

x = []

y = []

for single_data in all_data:

temp_data = re.split("\t|

", single_data)

x.append(float(temp_data[0]))

y.append(float(temp_data[1]))

x = numpy.array(x).reshape([100, 1])

y = numpy.array(y).reshape([100, 1])

# 数据分析

plt.scatter(x, y)

plt.show()

# 数据建模

model = linear_model.LinearRegression()

model.fit(x, y)

# 模型评估

model_coef = model.coef_ # 获取模型自变量系数并赋值给model_coef

model_intercept = model.intercept_ # 获取模型的截距并赋值给model_intercept

r2 = model.score(x, y) # 回归方程 y = model_coef*x + model_intercept

print("R2:", r2)

# 销售预测

new_x = [84610]

pre_y = model.predict(new_x)

print("预测销售额:", pre_y[0])

```